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Let be the process formed from the increments of the
fractional Brownian motion as

(24)

for . The conditional expectations for in (4) are obtained
by predicting the future increments of the fractional Brownian motion
given the past increments. The required computations for these predic-
tions are known for general Gaussian processes. To apply these results
to the sequence formed by the increments of a fractional Brownian mo-
tion let . By a Gram-Schmidt orthogonalization procedure there
is a collection of independent standard Gaussian random variables,

, that is equivalent to . Then

(25)

The computations of the expectations follow from (23).

V. CONCLUSION

The completion of squares method that is used here allows for a
system with a general square integrable noise process. The (7) that is
used here is somewhat analogous to the equation for the continuous
time results [2]–[4]. However many discrete time linear equations pro-
vide the same limiting continuous time equations, so an elementary
discretization of the continuous time equations does not yield the dis-
crete time results. It should also be important to solve the associated
partially observed discrete time control problem.
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Adaptive Tracking Control of Linear Systems With
Binary-Valued Observations and Periodic Target

Yanlong Zhao, Jin Guo, and Ji-Feng Zhang

Abstract—This technical note studies the adaptive control for linear sys-
tems with set-valued observations to track a given periodic target. Based
on the system parameters, accessorial parameters with the same order as
that of the tracking targets are introduced and estimated. Considering the
system parameters are unknown and set-valued observations can supply
only limited information each time, a two-scale adaptive control algorithm
is designed. Each control input is designed at the large time scale and lasts
for a holding time (small scale), during which the parameter estimation
algorithm is constructed. From the estimate of accessorial parameters, the
control signal is updated at the large time scale by the certainty equivalence
principle. As the holding time goes to infinity, the algorithm can be proved
to be asymptotically efficient in a certain sense. Meanwhile, the adaptive
tracking algorithm is shown to be asymptotically optimal. A numerical ex-
ample is given to demonstrate the effectiveness of the algorithms and the
main results obtained.

Index Terms—Adaptive control, asymptotically efficient, asymptotically
optimal control, parameter estimation, periodic target.

I. INTRODUCTION

The theory on system control and identification has played important
roles in areas of social, financial, biological, industrial, and medical
systems. With the solving of practical problems, the theory itself has
been developed and generated more and more catalogues, from con-
tinuous ones to discrete ones, from time-invariant ones to time varying
ones, from single systems to multi-agent systems, and so on. Many
classic methodologies have been raised such as least-squares algorithm
([1], [2]), maximum likelihood algorithm ([3], [4]), Kalman filtering
([2], [5]), self-tuning regulator ([6]). These methodologies are con-
structed based on the accurate information of system output, or output
with measurement noises.
With the development of new technologies, set-valued output sys-

tems have appeared, which can only supply whether the system output
is in some set or not, to challenge the base of classic identification and
control methods. For example, the nerve cell ([7]) has its action po-
tential dynamics and a fixed threshold inside. If the action potential
is larger than the threshold, then the cell is in the state of excitation;
otherwise, inhibition. From the outside of the cell, we can only tell
whether the cell is excited or inhibited, or equivalently, whether the ac-
tion potential is in the set of less than the threshold. The nerve cell is
an example of set-valued information with fixed thresholds, the case
with the adjustable thresholds can be found in the so called quantized
observations in wireless sensor networks ([8], [9]).
In both cases, the information of set-valued observations is much

more limited than the one of accurate observations. The measured
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signals to the input, state and controlled output are not one to one map-
pings, but essentially nonlinear. Identification and adaptive control
methods for conventional systems cannot be applied to such systems.
Thus, new algorithms and theory are needed to be developed for
parameter identification, adaptive control and performance analysis of
the set-valued observation systems.
On parameter identification, state estimation and stabilization

control of such systems, there have already been some initial works
([9]–[14]). On parameter identification, [12] and [13] gave a strongly
consistent and asymptotically optimal algorithm based on the periodic
input and statistical properties of the system noises. [10] discussed
the linear system identification with the colored noises based on
multi-sine input signal. [14] studied the identification of quantization
systems under a class of deterministic persistent excitation inputs. On
stabilization control, [11] considered the case where the parameters
were known, and proposed a state observer and a stabilization control.
On adaptive control of systems with set-valued observations, few

works appear in literature. The main reason is that for identification
purpose the system input can be assumed to be periodic, persistently
excited, or normally distributed; while for feedback control, the input
signal is decided by the control target, which spoils the above assump-
tions on inputs. However, [15] studied the adaptive tracking control
of a class of one-order systems with binary valued observations and
time-varying thresholds. What is different from [15] is that this tech-
nical note discusses the high order systems with fixed thresholds. The
fixed thresholds are defined in advance and the time-varying ones can
be designed according to the actual need, so the case of fixed thresh-
olds supplies less information than the one of time-varying ones. On
the other hand, the increase of parameters makes the coupling of the
states stronger. As a result, the method in [15] does not work here.
In this technical note, we try to challenge the adaptive control

problem with binary-valued observations, which is the base of
set-valued observations, for FIR (Finite Impulse Response) model
with independent and identically distributed (i.i.d.) noises. The
tracking target is periodic and the control is designed under mean
square performance. Since the system parameters are unknown and
set-valued observations can supply only limited information each
time, we construct a two-scale adaptive control algorithm: the scale
for identification is small and the scale for control is large. For each
control input, it will last for a holding time, during which the system
parameter is estimated, and the estimate is updated at the end of the
holding time. Based on the estimate of the parameters and the target of
the system output, the control law is designed. As the holding time in-
creases to infinity, the adaptive tracking is shown to be asymptotically
optimal.
This technical note is organized as follows. Section II formulates the

problem and gives the tracking performance. Then, the two-scale adap-
tive algorithm is constructed in Section III. Consequently, the prop-
erties of both the identification and adaptive control are analyzed in
Section IV. Section V uses a numerical example to demonstrate the ef-
fectiveness of the algorithms and the main results obtained. Section VI
introduces the potentially extended works that can be studied based on
the results in this technical note. Finally, Section VII gives some con-
cluding remarks.

II. PROBLEM FORMULATION

Consider the FIR system

(1)

where is the vector of
the input with for , is a vector of
unknown but constant parameters and is the system noise.

The system output is measured by a binary-valued sensor with
the threshold , which can be represented by an indicator
function

if
otherwise.

(2)

Assumption 2.1: is a sequence of independent
and identically distributed (i.i.d.) random variables with zero mean and
known covariance . The distribution function of , denoted by

, is known and twice continuously differentiable.
Assumption 2.2: The prior information on the unknown param-

eter is that and is a known compact set with
, where means the dimensional space

of real numbers and is the Euclidean norm of “ ”.
Assumption 2.3: There exists a known constant such that

for with .
Remark 1: In case of , the condition in Assumption 2.3 turns

to be the minimum phase condition, which is necessary for adaptive
tracking problem even if the system parameters are known ([6]). In
this technical note, the condition is a little stronger in order to avoid
the singularity of the accessorial parameter matrix constructed in the
next section.
Definition 1: ([16]): An circulant matrix

. . .

. . .
...

. . .
. . .

. . .
...

(3)

is completely determined by its first row , which will be
denoted by .
Definition 2: The periodic signal gen-

erated from is of full rank if the circulant matrix
is of full rank. And the vector is also called full

rank.
Assumption 2.4: The periodic target signal

is periodic with and one period , which is

known and deterministic. And, is of full rank.
Remark 2: Assumption 2.4 describes the properties of the reference

signals, based on which a control law can be designed to ensure a suf-
ficient persistent excitation condition for parameter estimation.
The goal of this technical note is to design a control law to make

the system output track the given periodic signal based
on the binary-valued observation in the case of unknown system
parameters and minimize the index

(4)

for , .

III. DESIGN OF ADAPTIVE CONTROL LAW

This section will provide a two-scale method of constructing the
adaptive control law. For convenience, we first transform the problem
to another form.

A. Transformation of the Problem

To clarify our thinking, we consider the case
where the parameters are known. By (1) and As-
sumption 2.1, we have
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, which implies
that the control law of minimizing (4) should satisfy

Thus, and the optimal control law
is an -periodic signal.
Inspired by this, we represent the system (1) as another form where

the dimension of the input is . To do so, the system output, input and
noise are written in the vector form as

for . Accordingly, the tracking index can also be updated
as

(5)

Noticing that the matrix of the input is an one, the first
problem is to construct an accessorial parameter
with dimension such that the system output can be rewritten into a
vector form as

(6)

Now, we show how to generate , . Considering the
comparison of and , there exist three situations:
i) As , let , ;
ii) As , let for and for

;
iii) As , let

(7)

for , where means the largest integer less than
or equal to “ ”.

The accessorial parameter plays a very important role during the
control design in this technical note. An advantage of the above con-
struction method is shown by the following proposition, whose proof
can be found in Appendix A.
Proposition 1: The accessorial parameter matrix

is of full rank if satisfies Assumption 2.3.
Till now, the transformation from (1) to (6) has been completed and

the problem can also be restated: the purpose of this technical note is
to design an adaptive control to drive the controlled output for the
system (6) to follow a known reference signal and minimize the
tracking index given by (5).

B. Adaptive Control Law

If the system parameter is known, the optimal control input matrix
should be designed as

(8)

with and . And
also, we can conclude that is of full rank based on Assumption 2.4.
In the case of unknown parameters, a two-scale adaptive control al-

gorithm will be given. The control scale is large, each control signal

lasts for a holding time, during which the small time scale is set, the
system parameters are estimated, and the estimates are updated at the
end of the holding time. Based on the estimates of the parameters and
the tracking target, the control law is designed via the certainty equiv-
alence principle.
Denote

By the analysis of Proposition 1, we have . This implies
that there exists , for example, where is given by As-
sumption 2.3, such that . With this information, denote

where and are given by Assumptions 2.1–2.2 and is the
threshold in (2).
The whole control strategy is constructed as follows:
Step 0: Initial conditions: Let and , where
is an -dimension identity matrix.

Step 1: Parameter estimation based on , .
Set , ,

which means that will last for
steps.
Let

(9)

and

(10)

where is an -dimensional column vector with each component
being 1.
The estimate of the parameter matrix can be constructed by

. However, the matrix estimation might be singular during the
calculation, so it is updated as

if
otherwise.

(11)

At time , let

(12)

Step 2: Adaptive control design.
As mentioned earlier, the optimal control law should be designed

by in the case of known parameters. Since we have had
the parameter estimation matrix , according to the certainty
equivalence principle ([6]), the adaptive control law should be designed
as

(13)

Go back to Step 1.
Precisely speaking, the two-scale adaptive control algorithm

is called since the control input is only designed at time ,
, which introduces the large scale. Each control input will

last a holding time from to , which is the small scale
of identification. Even the parameter estimate is only updated at time

, , the information of the whole holding time is used
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Fig. 1. Two-scale adaptive control algorithm.

by (9). At the large time scale, the control is updated based on the
parameter estimate. The whole idea can be shown in Fig. 1.
Remark 3: The holding time, which is denoted as , is chosen as
in this technical note. It is crucial to the two-scale algorithm and has
a very important influence on the convergence speed of the parameter
estimation error, which will be shown in Section IV. From the con-
struction process of the two-scale adaptive control law, it can be seen
that: i) is updated only at for , and will
last for steps after the update; ii) for a given has been
updated for times with

(14)

where is the set of positive integers.

IV. PERFORMANCE OF THE CLOSED-LOOP SYSTEM

In this section, it will be shown that the control law designed by Sec-
tion III not only canmake the adaptive tracking asymptotically optimal,
but also can ensure the convergence and efficiency of the parameter
estimation.

A. Parameter Estimation Properties

Denote the estimate error as , . Then, we
have the following results:
Theorem 1: For the system (6), if Assumptions 2.1–2.4 hold, then

the estimation algorithm (10) is asymptotically efficient in the sense of

(15)

where means the Cramér-Rao lower bound of the estima-
tion error of based on , , and given
by

(16)

where with

being the -th component of for and
being the density function of .
Proof: From the parameter estimation step in Section III-B, we

have , , which
means that will last for steps. By
Lemma 9 of [13], the Cramér–Rao lower bound of the estimation error
(16) can be obtained. Then, based on Theorem 5.7 of [17], (15) is true.

Theorem 2: Under the condition of Theorem 1, the parameter esti-
mates given by (10))–(13) converge to their true values with probability
1 and have the following convergence speed:

(17)

Proof: From (16), we have . In addition
(15), one can get

Notice that at any time , the convergence speed of the parameter es-
timate is decided by the largest less than from (14). By the fact
that , the convergence speed described by (17) can
be obtained.
Remark 4: From Theorem 2 and the relationship between and ,

it can be seen that in (1) can be identified by (10)–(13) if .
Otherwise, only elements of can be done.
Remark 5: From the point view of identification, the convergence

speed of the parameter estimate should be for periodic inputs
and binary observations [17]. In the adaptive tracking case, the inputs
cannot be purely periodic since the system parameters are unknown
and their estimates are updated. As a result, the convergence speed is
slowed down to by Theorem 2. In fact, the convergence speed
of the parameter estimate can be faster by choosing other holding time,
e.g., with , which is the largest integer no larger
than . Then, for any given , if the adaptive control law

updates its value at the time for
with and lasts for steps after the update, then the
parameter estimate given by (10)–(13) has the speed of

by the same reason as Theorem 1, where is given
by (14) with . In such sense, the two-scale adaptive control
algorithm can generate the parameter estimates converging to their true
values with a speed that can be arbitrarily close to by selecting
a suitable holding time . However, the convergence speed of
cannot be achieved since the empirical estimate method (10) requires
the small scale to generate periodic inputs. As a result, the two scales
design is necessary for the method in this technical note.

B. Asymptotical Optimality of the Adaptive Control

Theorem 3: Under the condition of Theorem 2, the adaptive control
law (10)–(13) is asymptotically optimal:

(18)

Proof: From (6) and (13), we have

(19)

In addition, by (10) and (13), we know that

(20)
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Fig. 2. Parameter estimate with real parameter in one holding time.

where is the -algebra generated by .
By (20) and Assumption 2.1, it can be seen that

which together with (19) implies that

Thus, the theorem is true by Theorem 2.
Remark 6: From Theorem 2 and 3, the two-scale algorithm has

achieved the goals of adaptive control and parameter convergence si-
multaneously. As mentioned in Remark 2, an important condition is
that the target vector is of full rank, which may not be necessary if only
for the adaptive tracking.

V. SIMULATION

Consider a gain system: ,
where is the system parameter to be identified, is i.i.d.
normally distributed noisewithmean 0 and covariance 0.25. The output

is measured by a binary sensor with threshold , i.e.,
. The prior information of the system parameter is .

Under the binary information , the goal is to design control law
such that the system output can track the target output with
.
The two-scale adaptive algorithm in Section III-B is used. The initial

input of the system is set as and , and the control
is designed by (13) at time for

and lasts for steps. The parameter is estimated by (11), (12). The
convergence of the identification algorithm by (10) during one holding
time is shown in Fig. 2, and convergence rate can be shown by

in Fig. 3, which means during one holding time the convergence
speed of the estimation error covariance is .
Fig. 4 describes a trajectory of the adaptive control law, where the

control signal is updated at the large scale time and lasts for
steps for .
The adaptive tracking is shown in Fig. 5. The curve in Fig. 5 looks

like white noise with mean 0, which shows that the system output is
well tracked.

Fig. 3. Trajectory of in one holding time.

Fig. 4. Adaptive control law.

Fig. 5. System output with tracking target .
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VI. EXTENDED WORKS

This technical note just shows the idea of two-scale adaptive control
algorithm with binary-valued observations. There are many extended
works that can be considered towards the directions of system models,
noise properties and the multiple set-valued case.
System models: The empirical measure method works for far beyond

the FIR model with set-valued observations. The methodology for the
IIR (Infinite Impulse Response) model can be found in [18], and even
for nonlinear models such as Wiener model ([19]) and Hammerstein
model ([17]).
Noise properties: Noise properties are very important for empirical

measure method. This technical note considers the case where the noise
distribution is known and other constrains required in Assumption 2.1.
It should be pointed out that this methodology still works for the case of
unknown distributions ([18]) and more general noises such as mixing
noises ([20]).
Set-valued observation: The output observations are binary in this

technical note, which contain the information with only one threshold.
For the multiple threshold cases, the estimation algorithm can be
constructed as a quasi-convex combination of information from each
thresholds ([17]). It can be shown that with the increasing of the
threshold, the convergence speed can be faster.

VII. CONCLUSION

This technical note studies the adaptive control for linear systems
with set-valued observations to track periodic targets. For the different
order of system parameters, accessorial parameters with the same order
as the one of tracking target can be constructed. A two-scale adap-
tive control algorithm is constructed. The -th control signal lasts for
a holding time , during which the accessorial parameter estimate is
constructed and shown to be convergent and asymptotically efficient.
As the holding time goes to infinity, the adaptive tracking algorithm is
proved to be asymptotically optimal and the convergence rate is also
obtained.
For different cases of system parameter with order and target

vector with order , the adaptive tracking problem can be written
and turn to the relationship

by (8). For , all system parameters can be estimated. However,
as , only constructed parameters can
be estimated instead of the whole system parameters. Even though, it
is interesting to find that the estimates of constructed parameters are
good enough to track the target. As a result, for all cases of and ,
the tracking purpose is achieved.
The holding time is a specialty of two-scale adaptive algorithm and

the constrain in this technical note is that the holding time goes to in-
finity. Meaningful future works contain that constructing algorithms
with finite holding time, and even the identification and control algo-
rithms are constructed at each time step just as the classic cases.

APPENDIX A
PROOF OF PROPOSITION 1

To prove Proposition 1, the following lemma is introduced first.
Lemma A.1: ([16]): The circulant matrix is of full

rank if and only if its discrete Fourier transform
is nonzero at with , where is the imagi-
nary unit, i.e, .
Now, we can give the proof of Proposition 1. By Lemma A.1, we

only need to confirm that is nonzero at with
. Assumption 2.3 ensures the fact that for we have

.

As , we have for , and thus

Since for , together with the fact that the points
follows , we have is nonzero at . Hence,

is of full rank.
As , for with , by for

and , we have

and . Hence,
is of full rank.
Thus, the proposition is true.
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